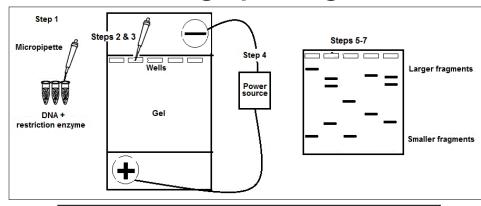

Name	Period:	Date:

Unit 8 - Biotechnology


Genetic Transformation

Plasmid			
Restriction enzyme			
Examples of Transgenic Or	ganisms:		
1. Agriculture	•		
		 plants with a gene from 	
a cold-water fish	n so it to survive in the	– plants with a gene from e colder temperatures.	
⊢ ь.		– Instead of spraying	
pesticides, plan being eaten by	ts contain a gene to m	nake their own to avoid	
C.		_ Plants with a gene to	
help survive with			
2. Industry & Medicine			
a. Bacteria contair	genes to digest		
b	and		
		both of these can	
		uman and inserting it into	
bacteria. Now t	ne pacteria can make	these proteins for us.	
			J

Steps to Genetic Transformation (see the picture) Step # _____: The glowing gene is spliced (placed) into plasmid matching up sticky ends. Step # _____: Bacteria cell with new gene divides and these cells are able to glow when the gene is turned on. Step # _____: Plasmid is removed from bacteria cell and is cut with a restriction enzyme. Step # _____: The glowing gene is cut out of the jellyfish DNA using the same restriction enzyme. Step # _____: The plasmid is put back into the bacteria cell. Why might it be important to use the same enzyme in step 1 and step 2? This process worked on a bacteria cell, but would it work on a larger organism like a human? Why or why not?

DNA Fingerprinting

Determine who committed a ______. Used to free individuals who have been wrongly accused of a crime. Determine parents of a child - ______ (father) and _____ (mother). Identify how closely _____ organisms are. Organisms that are more closely related have DNA bands in common.

Crime		Suspects		
DNA	1	2	3	4
_			_	
			_	

- Label the positive and negative ends of the gel.
- 2. Which suspect has the smallest DNA fragment?
- Which suspect committed the crime?

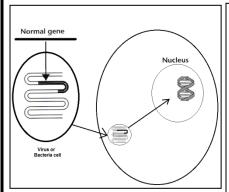
Steps of DNA fingerprinting	Why is each step performed? Think back to the gel electrophoresis lab and paper activity you did.
DNA from blood or other tissues is placed into a tube. Restriction enzymes are also added to the tube. Why do we add restriction enzymes to the DNA?	
Do we add the same or different restriction enzymes to each setup? Why?	
2. A gel electrophoresis chamber has been set up. There is a gel that has wells in it at the negative end of the chamber. • What are the wells and what do we put in them?	
3. Small amounts of DNA are placed inside each of the wells using a micropipette. Each time a new sample is loaded, a new tip is placed on the end of the micropipette. • Why is it important to change tips on the micropipette?	
Once all the wells are loaded, the chamber is then hooked up to an electrical source. Why do we connect the chamber to a power source?	
The DNA begins to move towards the positive side of the chamber. Why does the DNA move to the positive side of the gel?	
6. The DNA separates based on size. • How does it separate by size? Explain	
7. The gel is taken out of the chamber and stained. • Why do we stain the gels if we are using DNA?	

3 Types of Stem Cells:

- Cells in early embryos, can become any type of cell
- treat diseases of the blood or to restore the blood system after treatment for specific cancers.
- ______ these are tissue-specific, and

only form that type of tissue

How are scientists trying to use stem cells?


Scientists are trying to develop stem cell ______.
 Since stem cells can become ______ types of cells, if a person needs a certain cell type due to injury or disease, then stem cells can be implanted to produce the cells the patient needs.

So what's the controversy....

- Using embryo's are we destroying life?
- Therapies are still being studied. Some implants have not been successful.
 Instead of the stem cells developing into the cell the doctors wanted, the stem cells form something else.
 - Cancer cells
 - o Bone in the brain

Gene therapy uses something called a vector to deliver a

gene taken from a person without the disease and delivering the gene into the cells of the person with the disease.

2 diseases treated this way are:

- Severe combined immunodeficiency (_____ or "bubble boy" disease)
- Or bubble boy disease

Steps to Cloning

Steps to Cloning.
Let the egg cell divide to form an embryo.
Place the diploid nucleus into the egg cell. This has the full set of chromosomes.
The cloned animal is born.
Take an egg cell from a female.
Remove the nucleus from the diploid cell.
Place the embryo into a surrogate female.
Remove the haploid nucleus. The nucleus must be removed or there will be too many chromosomes.
Take a diploid cell from an animal.